Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichloridobis{*N*,*N*-diethyl-4-[(pyridin-2 $vl-\kappa N$)diazenvlaniline}zinc

Nararak Leesakul,^a* Chaveng Pakawatchai,^a Saowanit Saithong,^a Yuthana Tantirungrotechai^b and Kwanchanok **Kwanplod**^a

^aDepartment of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and ^bNational Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand Correspondence e-mail: nararak.le@psu.ac.th

Received 20 May 2011; accepted 13 June 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.086; data-to-parameter ratio = 14.5.

In the title complex, $[ZnCl_2(C_{15}H_{18}N_4)_2]$, the Zn^{II} cation is coordinated by two N atoms from the pyridine rings of two N,N-diethyl-4-[(pyridin-2-yl)diazenyl]aniline unidentate ligands and two Cl atoms, resulting in a distorted tetrahedral geometry. The ligands are mutually transoid with respect to the metal atom. Weak intermolecular C-H···Cl hydrogen bonds and $\pi - \pi$ interactions, with centroid–centroid distances of 3.8452 (14) and 3.9932 (14) Å, are found in the crystal packing.

Related literature

For background to azo complexes, see: Arslan (2007); Santra et al. (2001); Peacock et al. (2007); Ohashi et al. (2003). For applications of azo compounds, see: Millington et al. (2007); Hallas & Choi (1999); Ho et al. (1995); Sharma et al. (2008). For their photochromic properties, see: Baena et al. (1994). For structures of related azoimine complexes, see: Leesakul et al. (2010); Nag et al. (2001); Pramanik & Das (2010); Steffen & Palenik (1976).

Experimental

Crystal data

D-

C1

$[ZnCl_2(C_{15}H_{18}N_4)_2]$	V = 3075.9 (2) Å ³
$M_r = 644.96$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 13.4058 (6) Å	$\mu = 1.01 \text{ mm}^{-1}$
b = 13.8797 (6) Å	$T = 100 { m K}$
c = 16.8157 (8) Å	$0.17 \times 0.17 \times 0.06 \text{ mm}$
$\beta = 100.562 \ (1)^{\circ}$	

Data collection

Bruker APEX CCD area-detector	32570 measured reflections
diffractometer	5410 independent reflections
Absorption correction: multi-scan	4547 reflections with $I > 2s(I)$
(SADABS; Bruker, 2003)	$R_{\rm int} = 0.050$
$T_{\min} = 0.780, \ T_{\max} = 1.000$	
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.035$	374 parameters
$wR(F^2) = 0.086$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
5410 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$-H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$7-H17\cdots Cl1^{i}$	0.95	2.72	3.486 (2)	138
····· (1)	. 5 1			

Symmetry code: (i) $x, -y + \frac{5}{2}, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

NL acknowledges financial support from the Center for Innovation in Chemistry (PERCH-CIC), the Commission on Higher Education and the Ministry of Education. YT thanks the National Nanotechnology Center (NANOSIM) and the Thailand Research Fund (RSA-5180010) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2423).

References

- Arslan, F. (2007). Dyes and Pigments. 75, 521-525.
- Baena, M. J., Barbed, J., Espinet, P., Ezcurra, J. A., Res, M. B. & Serrano, J. L. (1994). J. Am. Chem. Soc. 116, 1899-1906.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.
- Hallas, G. & Choi, J. H. (1999). Dyes Pigments. 40, 119-129.
- Ho, M. S., Natansohn, A. & Rochon, P. (1995). Macromolecules, 28, 6124-6127. Leesakul, N., Yoopensuk, S., Pakawatchai, C., Saithong, S. & Hansongnern, K. (2010). Acta Cryst. E66, o1923.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Millington, K. R., Fincher, K. W. & King, A. L. (2007). Sol. Energ. Mater. Sol. Cells, 91, 1618-1630.

- Nag, J. K., Santra, P. K., Sinha, C., Liao, F.-L. & Lu, T.-H. (2001). *Polyhedron*, **20**, 2253–2259.
- Ohashi, A., Tsukuda, T. & Watari, H. (2003). Anal. Sci. 19, 1085-1086.
- Peacock, A. F. A., Habtemariam, A., Moggach, S. A., Prescimone, A., Pearsons, S. & Sadler, P. J. (2007). *Inorg. Chem.* 46, 4049–4059.
- Pramanik, A. & Das, G. (2010). Polyhedron, 29, 2999–3007.
- Santra, P. K., Ray, U., Pal, S. & Sinha, C. (2001). *Inorg. Chem. Commun.* 4, 269–273.
- Sharma, G. D., Suresh, P., Sharma, S. K. & Roy, M. S. (2008). Synth. Met. 158, 509–515.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steffen, W. L. & Palenik, G. J. (1976). Acta Cryst. B32, 298-300.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, m955-m956 [doi:10.1107/S1600536811022884]

Dichloridobis{N,N-diethyl-4-[(pyridin-2-yl-kN)diazenyl]aniline}zinc

N. Leesakul, C. Pakawatchai, S. Saithong, Y. Tantirungrotechai and K. Kwanplod

Comment

The chemistry of azoimine (-N=N-C=N-) compounds has been known for stabilizing the low-valent metal ions (Arslan, 2007; Santra *et al.*, 2001; Peacock *et al.*,2007; Ohashi *et al.*, 2003). The imine (-C=N-) and azo (-N=N-) units are ordinary high affinity towards transition metal binding *via* N hetero atom. Azo compounds are highly colored and commonly utilized in textile industries (Millington *et al.*, 2007; Hallas *et al.*, 1999), optical data storage (Ho *et al.*, 1995) and sensitizer in DSSC (Sharma *et al.*, 2008). In particular, coordination compounds of Zn^{II} incorporating with azo moiety are extensively used as photoactive materials owing to its interesting photochromic properties (Baena *et al.*, 1994).

Herein, we report the synthesis and crystal structure of a novel Zn^{II} complex with N,N-diethyl-4-[2-(pyridyl)diazenyl]aniline (C₃₀H₃₆N₈: deazpy), an azoimine ligand. The molecular structure of Zn(C₃₀H₃₆N₈)Cl₂ is a distorted tetrahedral complex (Scheme 1 and Fig.1). The N,N-diethyl-4-[2-(pyridyl)diazenyl]aniline ligand is a bidentate ligand. The chelated coordinations (Nag et al., 2001) between Zn^{II} and N donor atoms of pyridine and azo moieties are generally observed in the crystal structure. However, in the present work, the Zn^{II} coordinates to two unidentate deazpy ligands via N(py) atoms [Zn(1)-N(1) = 2.0513 (19) Å, Zn(1)-N(5) = 2.0439 (19) Å] and two Cl atoms [Zn(1)-Cl(1) = 2.2565 (6) Å, Cl(1)-Cl(1) = 2.2565 (6) Å]Zn(1)—Cl(2) = 2.2713 (6) Å]. These Zn—N bond distances are slightly longer than that of related Zn^{II} with two unidentate imidazole ligands (Pramanik et al., 2010) giving the Zn-N distances = 2.003 (3) and 2.013 (3) Å. The reported Zn-Cl bond distances in dichlorobis(2-azopyridine)zinc(II) (Nag et al., 2001) complex are averaged to 2.2293 Å while the averaged Zn-Cl bond length in complex of dichlorobis(pyridine)zinc(II) reports at 2.222 Å (Steffen et al., 1976) which are slightly shorter than our complex (average 2.2639 Å). All N-Zn-N, N-Zn-Cl and Cl-Zn-Cl bond angles deviate from 109.5⁻, especially for N(5)—Zn(1)—N(1) = 123.54 (8)^o arising from the steric constraints from the deapy structure. The torsion angles of pyridine-azo-phenyl atoms, C(5)-N(2)-N(3)-C(6) and C(20)-N(6)-N(7)-C(21), are -179.03 (19) and -178.30 (19)^o, respectively. The dihedral angle of mean planes of pyridine-azo-phenyl rings among two ligands is $57.40(0.04)^{\circ}$. Within the ligand molecules, the N(py) atoms exist in *trans*-orientation with respect to the N(azo) atom attached to the phenyl ring. It is as same as that observed from the similar free ligand, N,N-dimethyl-4-[2(pyridyl)diazenyl] aniline (dmazpy) (Leesakul et al., 2010). The N=N distances of the Zn^{II} complex are 1.286 (3) Å for N2=N3 and 1.280 (3) Å for N6=N7 which are longer than that of the free dmazpy ligand, 1.2566 (16) Å. It is because of the back donation of electron from d^{10} -Zn^{II} to π^* orbital of the ligands. The strength of the azo bond decreases in comparison with the related free ligand.

The intramolecular C—H··· π interactions are found between the phenyl ring of ligand 1 and the pyridine ring (*Cg*2) of ligand 2 [C(11)—H(11)··· π_{Cg2} = 3.303 Å] and *vice versa* [C(26)—H(26)··· π_{Cg1} = 3.550 Å](Fig. 2). In crystal packing, each molecule interacts the adjacent molecules *via* weak hydrogen-bonding interactions of C(17)—H(17)···Cl(1)ⁱ, [C···Cl = 3.486 (2) Å, symmetry code i: *x*, -*y* + 5/2, *z* - 1/2] (Fig. 2 and Tab. 1). In addition, the intermolecular π - π interactions are found between the phenyl ring of ligands and the adjacent molecules [Cg3···Cg3ⁱⁱ = 3.8452 (14) Å and Cg4···Cg4ⁱⁱⁱ = 3.9932 (14) Å, symmetry code (ii): 2-*x*, 1-*y*, 1-*z*, (iii): 1-*x*, 1-*y*, -*z*] (Fig. 3 and Tab. 2).

Experimental

An acetonitrile solution (20 ml) of the *N*,*N*-diethyl-4-[2-(pyridyl)diazenyl]aniline ligand (0.15 g, 0.6 mmol) and ZnCl₂ (0.04 g, 0.3 mmol) was refluxed for 4 h. The filtrate was left at room temperature for 2 weeks. The dark red solids were precipitated and washed it with CH_2Cl_2 and diethylether, respectively for twice times in order to remove the excess ligands. The dark red solids were recrystallized in acetonitrile and methanol (1:2) at 277 K for 10 days. The red crystals were obtained (yield 67%, 0.13 g).

Refinement

The structure was solved by direct methods refined by a full-matrix least-squares procedure based on F^2 . All hydrogen atoms were constrained, C—H = 0.95 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ for C- sp^2 atoms of pyridine and phenyl rings and C—H = 0.98–0.99 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for C- sp^3 atoms of the ethyl group respectively.

Figures

Fig. 1. Molecular structure of complex with thermal ellipsoids plotted at the 50% probability level. H atoms are omitted.

Fig. 2. The weak intermolecular interactions of C-H···Cl between the adjacent molecules.

Fig. 3. The π - π interactions between molecules in crystal packing.

Dichloridobis{*N*,*N*-diethyl-4-[(pyridin-2- yl-κ*N*)diazenyl]aniline}zinc

Crystal data	
$[ZnCl_2(C_{15}H_{18}N_4)_2]$	F(000) = 1344
$M_r = 644.96$	$D_{\rm x} = 1.393 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5833 reflections
a = 13.4058 (6) Å	$\theta = 2.3 - 24.9^{\circ}$
b = 13.8797 (6) Å	$\mu = 1.01 \text{ mm}^{-1}$
c = 16.8157 (8) Å	T = 100 K
$\beta = 100.562 \ (1)^{\circ}$	Block, red brown
$V = 3075.9 (2) \text{ Å}^3$	$0.17 \times 0.17 \times 0.06 \text{ mm}$

Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer	5410 independent reflections
Radiation source: fine-focus sealed tube	4547 reflections with $I > 2s(I)$
graphite	$R_{\text{int}} = 0.050$
Frames, each covering 0.3 $^{\circ}$ in ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2003)	$h = -15 \rightarrow 15$
$T_{\min} = 0.780, T_{\max} = 1.000$	$k = -16 \rightarrow 16$
32570 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.086$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.042P)^2 + 1.4983P]$ where $P = (F_o^2 + 2F_c^2)/3$
5410 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
374 parameters	$\Delta \rho_{max} = 0.50 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma$ (F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.22361 (2)	1.268175 (19)	0.199133 (15)	0.01635 (9)
Cl1	0.33540 (5)	1.35648 (4)	0.28631 (3)	0.02473 (15)
Cl2	0.10979 (5)	1.36055 (4)	0.11562 (4)	0.02345 (15)
N1	0.14219 (14)	1.19205 (13)	0.27007 (11)	0.0166 (4)
N2	0.11954 (14)	1.08164 (13)	0.16762 (11)	0.0183 (4)

N3	0.09170 (14)	0.99507 (14)	0.14720 (12)	0.0193 (4)
N4	0.15013 (15)	0.85544 (14)	-0.15184 (12)	0.0197 (4)
N5	0.30591 (14)	1.20492 (13)	0.12234 (11)	0.0162 (4)
N6	0.35399 (14)	1.09944 (13)	0.22628 (11)	0.0175 (4)
N7	0.40540 (14)	1.02387 (14)	0.25039 (11)	0.0191 (4)
N8	0.38830 (15)	0.89031 (14)	0.56015 (11)	0.0207 (4)
C1	0.13247 (17)	1.22457 (17)	0.34345 (14)	0.0191 (5)
H1	0.1592	1.2862	0.3602	0.023*
C2	0.08522 (17)	1.17201 (18)	0.39560 (14)	0.0212 (5)
H2	0.0804	1.1962	0.4476	0.025*
C3	0.04487 (17)	1.08254 (18)	0.36986 (14)	0.0217 (5)
H3	0.0132	1.0441	0.4048	0.026*
C4	0.05098 (17)	1.04982 (17)	0.29372 (14)	0.0204 (5)
H4	0.0208	0.9903	0.2746	0.025*
C5	0.10238 (16)	1.10573 (16)	0.24487 (14)	0.0166 (5)
C6	0.10811 (17)	0.96618 (16)	0.07189 (14)	0.0186 (5)
C7	0.07776 (18)	0.87198 (17)	0.04831 (15)	0.0219 (5)
H7	0.0478	0.8329	0.0839	0.026*
C8	0.09029 (18)	0.83498 (17)	-0.02471 (14)	0.0213 (5)
H8	0.0678	0.7714	-0.0392	0.026*
С9	0.13627 (17)	0.89031 (17)	-0.07878 (14)	0.0184 (5)
C10	0.16746 (18)	0.98555 (17)	-0.05428 (14)	0.0194 (5)
H10	0.1995	1.0245	-0.0887	0.023*
C11	0.15197 (17)	1.02167 (17)	0.01785 (14)	0.0196 (5)
H11	0.1714	1.0862	0.0318	0.024*
C12	0.21799 (18)	0.90415 (18)	-0.19791 (15)	0.0233 (5)
H12A	0.1994	0.9732	-0.2032	0.028*
H12B	0.2079	0.8764	-0.2530	0.028*
C13	0.32931 (19)	0.89580 (19)	-0.15950 (15)	0.0270 (6)
H13A	0.3398	0.9221	-0.1045	0.040*
H13B	0.3704	0.9320	-0.1918	0.040*
H13C	0.3496	0.8279	-0.1574	0.040*
C14	0.1117 (2)	0.76118 (18)	-0.18226 (16)	0.0277 (6)
H14A	0.0902	0.7650	-0.2417	0.033*
H14B	0.0512	0.7451	-0.1588	0.033*
C15	0.1883 (2)	0.6822 (2)	-0.1625 (2)	0.0539 (10)
H15A	0.2444	0.6931	-0.1915	0.081*
H15B	0.1562	0.6201	-0.1789	0.081*
H15C	0.2145	0.6816	-0.1041	0.081*
C16	0.30213 (18)	1.23720 (17)	0.04651 (14)	0.0193 (5)
H16	0.2644	1.2940	0.0300	0.023*
C17	0.35077 (17)	1.19130 (17)	-0.00828 (14)	0.0211 (5)
H17	0.3466	1.2155	-0.0616	0.025*
C18	0.40618 (18)	1.10855 (18)	0.01682 (14)	0.0221 (5)
H18	0.4401	1.0751	-0.0197	0.026*
C19	0.41197 (17)	1.07505 (17)	0.09476 (14)	0.0206 (5)
H19	0.4504	1.0191	0.1129	0.025*
C20	0.36016 (17)	1.12516 (16)	0.14622 (13)	0.0167 (5)
C21	0.39913 (17)	0.99451 (17)	0.32815 (14)	0.0187 (5)

C22	0.45412 (18)	0.91200 (17)	0.35774 (14)	0.0208 (5)
H22	0.4943	0.8800	0.3249	0.025*
C23	0.45074 (17)	0.87670 (17)	0.43350 (14)	0.0207 (5)
H23	0.4885	0.8205	0.4519	0.025*
C24	0.39216 (17)	0.92230 (16)	0.48482 (14)	0.0188 (5)
C25	0.33610 (18)	1.00572 (17)	0.45299 (14)	0.0200 (5)
H25	0.2948	1.0377	0.4850	0.024*
C26	0.34047 (18)	1.04044 (17)	0.37802 (14)	0.0194 (5)
H26	0.3032	1.0967	0.3591	0.023*
C27	0.31848 (19)	0.93302 (18)	0.60798 (14)	0.0245 (6)
H27A	0.3236	1.0041	0.6054	0.029*
H27B	0.3399	0.9136	0.6652	0.029*
C28	0.20876 (19)	0.9040 (2)	0.57998 (16)	0.0312 (6)
H28A	0.1865	0.9235	0.5235	0.047*
H28B	0.1664	0.9357	0.6139	0.047*
H28C	0.2024	0.8339	0.5844	0.047*
C29	0.44691 (19)	0.80678 (17)	0.59611 (15)	0.0239 (6)
H29A	0.4663	0.8172	0.6552	0.029*
H29B	0.5102	0.8027	0.5738	0.029*
C30	0.3912 (2)	0.71195 (18)	0.5815 (2)	0.0381 (7)
H30A	0.3286	0.7150	0.6037	0.057*
H30B	0.4344	0.6600	0.6081	0.057*
H30C	0.3744	0.6994	0.5232	0.057*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01989 (16)	0.01422 (15)	0.01534 (15)	0.00023 (11)	0.00428 (11)	0.00035 (11)
Cl1	0.0290 (3)	0.0241 (3)	0.0210 (3)	-0.0076 (3)	0.0041 (3)	-0.0036 (2)
Cl2	0.0261 (3)	0.0200 (3)	0.0243 (3)	0.0059 (2)	0.0047 (3)	0.0049 (2)
N1	0.0165 (10)	0.0162 (10)	0.0170 (10)	0.0029 (8)	0.0026 (8)	0.0020 (8)
N2	0.0170 (10)	0.0169 (10)	0.0204 (10)	0.0005 (8)	0.0013 (8)	-0.0017 (8)
N3	0.0181 (10)	0.0159 (10)	0.0230 (11)	0.0003 (8)	0.0017 (8)	-0.0014 (8)
N4	0.0200 (10)	0.0182 (10)	0.0205 (10)	-0.0021 (8)	0.0024 (8)	-0.0033 (8)
N5	0.0169 (10)	0.0143 (10)	0.0173 (10)	-0.0024 (8)	0.0029 (8)	-0.0008 (8)
N6	0.0170 (10)	0.0163 (10)	0.0187 (10)	-0.0011 (8)	0.0021 (8)	0.0009 (8)
N7	0.0180 (10)	0.0170 (10)	0.0215 (10)	0.0008 (8)	0.0010 (8)	0.0001 (8)
N8	0.0229 (11)	0.0183 (10)	0.0208 (11)	0.0040 (9)	0.0040 (9)	0.0037 (9)
C1	0.0162 (12)	0.0191 (12)	0.0210 (13)	0.0032 (10)	0.0011 (10)	-0.0005 (10)
C2	0.0180 (12)	0.0288 (14)	0.0171 (12)	0.0060 (11)	0.0042 (10)	0.0015 (10)
C3	0.0156 (12)	0.0256 (13)	0.0247 (13)	0.0022 (10)	0.0059 (10)	0.0085 (11)
C4	0.0139 (12)	0.0167 (12)	0.0299 (14)	-0.0002 (10)	0.0022 (10)	0.0014 (10)
C5	0.0133 (12)	0.0150 (12)	0.0202 (12)	0.0015 (9)	-0.0001 (9)	0.0022 (10)
C6	0.0160 (12)	0.0177 (12)	0.0213 (12)	0.0006 (10)	0.0017 (10)	-0.0017 (10)
C7	0.0224 (13)	0.0177 (12)	0.0259 (13)	-0.0030 (10)	0.0056 (10)	0.0014 (10)
C8	0.0221 (13)	0.0141 (12)	0.0277 (13)	-0.0020 (10)	0.0047 (10)	-0.0021 (10)
С9	0.0123 (11)	0.0186 (12)	0.0224 (12)	0.0019 (10)	-0.0015 (9)	0.0000 (10)
C10	0.0191 (12)	0.0189 (12)	0.0196 (12)	-0.0035 (10)	0.0022 (10)	0.0022 (10)

C11	0.0172 (12)	0.0141 (12)	0.0260 (13)	-0.0015 (10)	0.0001 (10)	-0.0005 (10)
C12	0.0248 (14)	0.0237 (13)	0.0210 (13)	-0.0022 (11)	0.0035 (10)	-0.0018 (10)
C13	0.0260 (14)	0.0278 (14)	0.0279 (14)	-0.0030 (11)	0.0072 (11)	-0.0005 (11)
C14	0.0265 (14)	0.0237 (14)	0.0326 (15)	-0.0047 (11)	0.0049 (11)	-0.0080 (11)
C15	0.0332 (17)	0.0193 (15)	0.103 (3)	-0.0011 (13)	-0.0038 (18)	-0.0061 (17)
C16	0.0194 (12)	0.0182 (12)	0.0203 (12)	-0.0038 (10)	0.0033 (10)	0.0014 (10)
C17	0.0208 (13)	0.0247 (13)	0.0182 (12)	-0.0094 (11)	0.0048 (10)	0.0022 (10)
C18	0.0204 (13)	0.0236 (13)	0.0241 (13)	-0.0039 (11)	0.0087 (10)	-0.0074 (11)
C19	0.0166 (12)	0.0204 (12)	0.0256 (13)	-0.0011 (10)	0.0056 (10)	-0.0022 (10)
C20	0.0159 (12)	0.0149 (12)	0.0193 (12)	-0.0042 (10)	0.0031 (9)	-0.0009 (9)
C21	0.0165 (12)	0.0186 (12)	0.0204 (12)	-0.0004 (10)	0.0015 (10)	0.0000 (10)
C22	0.0184 (12)	0.0207 (13)	0.0239 (13)	0.0024 (10)	0.0055 (10)	-0.0005 (10)
C23	0.0176 (12)	0.0171 (12)	0.0265 (13)	0.0051 (10)	0.0020 (10)	0.0022 (10)
C24	0.0186 (12)	0.0177 (12)	0.0187 (12)	-0.0010 (10)	-0.0002 (10)	-0.0002 (10)
C25	0.0203 (12)	0.0183 (12)	0.0214 (12)	0.0026 (10)	0.0036 (10)	-0.0022 (10)
C26	0.0196 (13)	0.0153 (12)	0.0221 (12)	0.0024 (10)	0.0005 (10)	0.0014 (10)
C27	0.0313 (14)	0.0255 (13)	0.0175 (12)	0.0064 (11)	0.0068 (11)	0.0009 (10)
C28	0.0270 (15)	0.0318 (15)	0.0367 (16)	0.0058 (12)	0.0109 (12)	0.0037 (12)
C29	0.0267 (14)	0.0232 (13)	0.0211 (13)	0.0051 (11)	0.0026 (10)	0.0043 (10)
C30	0.0363 (17)	0.0194 (14)	0.058 (2)	0.0035 (12)	0.0057 (14)	0.0040 (13)

Geometric parameters (Å, °)

Zn1—N5	2.0439 (19)	C12—H12B	0.9900
Zn1—N1	2.0513 (19)	С13—Н13А	0.9800
Zn1—Cl1	2.2565 (6)	С13—Н13В	0.9800
Zn1—Cl2	2.2713 (6)	С13—Н13С	0.9800
N1—C1	1.343 (3)	C14—C15	1.498 (4)
N1—C5	1.348 (3)	C14—H14A	0.9900
N2—N3	1.286 (3)	C14—H14B	0.9900
N2—C5	1.401 (3)	C15—H15A	0.9800
N3—C6	1.384 (3)	C15—H15B	0.9800
N4—C9	1.364 (3)	C15—H15C	0.9800
N4—C14	1.463 (3)	C16—C17	1.378 (3)
N4—C12	1.464 (3)	C16—H16	0.9500
N5-C16	1.344 (3)	C17—C18	1.391 (3)
N5—C20	1.345 (3)	С17—Н17	0.9500
N6—N7	1.280 (3)	C18—C19	1.379 (3)
N6—C20	1.410 (3)	C18—H18	0.9500
N7—C21	1.387 (3)	C19—C20	1.391 (3)
N8—C24	1.352 (3)	С19—Н19	0.9500
N8—C27	1.466 (3)	C21—C22	1.403 (3)
N8—C29	1.467 (3)	C21—C26	1.404 (3)
C1—C2	1.381 (3)	C22—C23	1.373 (3)
C1—H1	0.9500	С22—Н22	0.9500
C2—C3	1.391 (3)	C23—C24	1.418 (3)
С2—Н2	0.9500	C23—H23	0.9500
C3—C4	1.375 (3)	C24—C25	1.430 (3)
С3—Н3	0.9500	C25—C26	1.361 (3)

C4—C5	1.400 (3)	С25—Н25	0.9500
C4—H4	0.9500	C26—H26	0.9500
C6—C11	1.400 (3)	C27—C28	1.514 (4)
C6—C7	1.405 (3)	C27—H27A	0.9900
С7—С8	1.369 (3)	С27—Н27В	0.9900
С7—Н7	0.9500	C28—H28A	0.9800
C8—C9	1.415 (3)	C28—H28B	0.9800
С8—Н8	0.9500	C28—H28C	0.9800
C9—C10	1.424 (3)	C29—C30	1.511 (4)
C10—C11	1.363 (3)	С29—Н29А	0.9900
C10—H10	0.9500	С29—Н29В	0.9900
C11—H11	0.9500	C30—H30A	0.9800
C12—C13	1.518 (3)	C30—H30B	0.9800
C12—H12A	0.9900	С30—Н30С	0.9800
N5—Zn1—N1	123.54 (8)	N4—C14—H14A	108.9
N5—Zn1—Cl1	105.82 (5)	C15—C14—H14A	108.9
N1—Zn1—Cl1	105.24 (6)	N4—C14—H14B	108.9
N5—Zn1—Cl2	103.36 (6)	C15—C14—H14B	108.9
N1—Zn1—Cl2	106.35 (5)	H14A—C14—H14B	107.8
Cl1—Zn1—Cl2	112.70 (2)	С14—С15—Н15А	109.5
C1—N1—C5	119.2 (2)	C14—C15—H15B	109.5
C1—N1—Zn1	120.86 (16)	H15A—C15—H15B	109.5
C5—N1—Zn1	119.82 (15)	C14—C15—H15C	109.5
N3—N2—C5	112.43 (19)	H15A—C15—H15C	109.5
N2—N3—C6	115.34 (19)	H15B—C15—H15C	109.5
C9—N4—C14	122.3 (2)	N5-C16-C17	122.7 (2)
C9—N4—C12	120.86 (19)	N5—C16—H16	118.7
C14—N4—C12	116.16 (19)	С17—С16—Н16	118.7
C16—N5—C20	118.8 (2)	C16—C17—C18	118.1 (2)
C16—N5—Zn1	121.70 (16)	C16—C17—H17	121.0
C20—N5—Zn1	119.34 (15)	C18—C17—H17	121.0
N7—N6—C20	112.80 (18)	C19—C18—C17	120.0 (2)
N6—N7—C21	114.67 (19)	C19—C18—H18	120.0
C24—N8—C27	121.26 (19)	C17—C18—H18	120.0
C24—N8—C29	122.4 (2)	C18—C19—C20	118.4 (2)
C27—N8—C29	116.16 (19)	С18—С19—Н19	120.8
N1—C1—C2	122.6 (2)	С20—С19—Н19	120.8
N1—C1—H1	118.7	N5-C20-C19	122.0 (2)
C2—C1—H1	118.7	N5—C20—N6	111.74 (19)
C1—C2—C3	118.1 (2)	C19—C20—N6	126.2 (2)
С1—С2—Н2	120.9	N7—C21—C22	117.1 (2)
С3—С2—Н2	120.9	N7—C21—C26	124.6 (2)
C4—C3—C2	119.9 (2)	C22—C21—C26	118.3 (2)
С4—С3—Н3	120.1	C23—C22—C21	121.0 (2)
С2—С3—Н3	120.1	C23—C22—H22	119.5
C3—C4—C5	118.9 (2)	C21—C22—H22	119.5
C3—C4—H4	120.6	C22—C23—C24	121.4 (2)
С5—С4—Н4	120.6	С22—С23—Н23	119.3
N1—C5—C4	121.2 (2)	С24—С23—Н23	119.3

N1—C5—N2	112.38 (19)	N8—C24—C23	123.0 (2)
C4—C5—N2	126.5 (2)	N8—C24—C25	120.6 (2)
N3—C6—C11	126.2 (2)	C23—C24—C25	116.4 (2)
N3—C6—C7	116.2 (2)	C26—C25—C24	121.6 (2)
C11—C6—C7	117.6 (2)	С26—С25—Н25	119.2
C8—C7—C6	121.7 (2)	С24—С25—Н25	119.2
С8—С7—Н7	119.2	C25—C26—C21	121.1 (2)
С6—С7—Н7	119.2	С25—С26—Н26	119.4
С7—С8—С9	120.8 (2)	C21—C26—H26	119.4
С7—С8—Н8	119.6	N8—C27—C28	113.8 (2)
С9—С8—Н8	119.6	N8—C27—H27A	108.8
N4—C9—C8	122.2 (2)	С28—С27—Н27А	108.8
N4—C9—C10	120.6 (2)	N8—C27—H27B	108.8
C8—C9—C10	117.2 (2)	С28—С27—Н27В	108.8
С11—С10—С9	120.9 (2)	H27A—C27—H27B	107.7
C11-C10-H10	119.5	C27—C28—H28A	109.5
C9—C10—H10	119.5	C27—C28—H28B	109.5
C10—C11—C6	121.7 (2)	H28A—C28—H28B	109.5
C10-C11-H11	119.1	C27—C28—H28C	109.5
С6—С11—Н11	119.1	H28A—C28—H28C	109.5
N4—C12—C13	113.4 (2)	H28B—C28—H28C	109.5
N4—C12—H12A	108.9	N8—C29—C30	114.2 (2)
C13—C12—H12A	108.9	N8—C29—H29A	108.7
N4—C12—H12B	108.9	С30—С29—Н29А	108.7
C13—C12—H12B	108.9	N8—C29—H29B	108.7
H12A—C12—H12B	107.7	С30—С29—Н29В	108.7
С12—С13—Н13А	109.5	H29A—C29—H29B	107.6
C12—C13—H13B	109.5	С29—С30—Н30А	109.5
H13A—C13—H13B	109.5	С29—С30—Н30В	109.5
С12—С13—Н13С	109.5	H30A—C30—H30B	109.5
H13A—C13—H13C	109.5	С29—С30—Н30С	109.5
H13B—C13—H13C	109.5	H30A—C30—H30C	109.5
N4—C14—C15	113.2 (2)	H30B—C30—H30C	109.5
N5—Zn1—N1—C1	146.45 (16)	C9—C10—C11—C6	2.1 (4)
Cl1—Zn1—N1—C1	25.15 (18)	N3—C6—C11—C10	178.1 (2)
Cl2—Zn1—N1—C1	-94.64 (17)	C7—C6—C11—C10	-1.7 (3)
N5—Zn1—N1—C5	-29.95 (19)	C9—N4—C12—C13	69.6 (3)
Cl1—Zn1—N1—C5	-151.25 (15)	C14—N4—C12—C13	-101.3 (2)
Cl2—Zn1—N1—C5	88.96 (16)	C9—N4—C14—C15	-93.7 (3)
C5—N2—N3—C6	-179.03 (19)	C12—N4—C14—C15	77.0 (3)
N1—Zn1—N5—C16	135.03 (17)	C20-N5-C16-C17	0.7 (3)
Cl1—Zn1—N5—C16	-103.94 (17)	Zn1—N5—C16—C17	-174.90 (17)
Cl2—Zn1—N5—C16	14.72 (18)	N5-C16-C17-C18	-0.3 (3)
N1—Zn1—N5—C20	-40.56 (19)	C16—C17—C18—C19	-0.5 (3)
Cl1—Zn1—N5—C20	80.47 (16)	C17—C18—C19—C20	0.9 (3)
Cl2—Zn1—N5—C20	-160.87 (15)	C16—N5—C20—C19	-0.3 (3)
C20—N6—N7—C21	-178.30 (19)	Zn1—N5—C20—C19	175.45 (17)
C5—N1—C1—C2	1.6 (3)	C16—N5—C20—N6	-178.30 (19)
Zn1—N1—C1—C2	-174.77 (17)	Zn1—N5—C20—N6	-2.6 (2)

N1—C1—C2—C3	-1.1 (3)	C18—C19—C20—N5	-0.5 (3)
C1—C2—C3—C4	-1.3 (3)	C18—C19—C20—N6	177.2 (2)
C2—C3—C4—C5	3.0 (3)	N7—N6—C20—N5	-179.76 (18)
C1—N1—C5—C4	0.2 (3)	N7—N6—C20—C19	2.3 (3)
Zn1—N1—C5—C4	176.66 (16)	N6—N7—C21—C22	-179.9 (2)
C1—N1—C5—N2	-179.48 (19)	N6-N7-C21-C26	1.3 (3)
Zn1—N1—C5—N2	-3.0 (2)	N7—C21—C22—C23	-178.7 (2)
C3—C4—C5—N1	-2.5 (3)	C26—C21—C22—C23	0.1 (3)
C3—C4—C5—N2	177.1 (2)	C21—C22—C23—C24	-0.3 (4)
N3—N2—C5—N1	172.75 (18)	C27—N8—C24—C23	-173.3 (2)
N3—N2—C5—C4	-6.9 (3)	C29—N8—C24—C23	1.7 (3)
N2—N3—C6—C11	0.5 (3)	C27—N8—C24—C25	6.9 (3)
N2—N3—C6—C7	-179.7 (2)	C29—N8—C24—C25	-178.1 (2)
N3—C6—C7—C8	-179.8 (2)	C22—C23—C24—N8	-179.0 (2)
C11—C6—C7—C8	0.0 (4)	C22—C23—C24—C25	0.8 (3)
C6—C7—C8—C9	1.1 (4)	N8—C24—C25—C26	178.6 (2)
C14—N4—C9—C8	4.7 (3)	C23—C24—C25—C26	-1.3 (3)
C12—N4—C9—C8	-165.6 (2)	C24—C25—C26—C21	1.1 (4)
C14—N4—C9—C10	-174.8 (2)	N7-C21-C26-C25	178.2 (2)
C12-N4-C9-C10	14.9 (3)	C22—C21—C26—C25	-0.5 (3)
C7—C8—C9—N4	179.8 (2)	C24—N8—C27—C28	74.3 (3)
C7—C8—C9—C10	-0.7 (3)	C29—N8—C27—C28	-101.0 (2)
N4-C9-C10-C11	178.6 (2)	C24—N8—C29—C30	-91.3 (3)
C8—C9—C10—C11	-0.9 (3)	C27—N8—C29—C30	84.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C17—H17···Cl1 ⁱ	0.95	2.72	3.486 (2)	138
Symmetry codes: (i) x , $-y+5/2$, $z-1/2$.				

Fig. 1

Fig. 3

